Solving Absolute Value Equations Practice

Sections:

About:

Additional Resources:

In this section, we learn how to solve absolute value equations. First, we need to remember that the absolute value of a number is the distance
between that number and zero on the number line. We will also revisit the concept of an additive inverse or opposite. Recall that opposites have
the same absolute value. So 3 and -3 are opposites and |3| = |-3|. In both cases, the absolute value is 3. We will use this information to help us
understand how to setup and solve an absolute value equation. Suppose we say that |x| = 7. This means we could replace x with 7 or -7, since |7| = 7
and |-7| = 7. This leads to a simple method to solve an absolute value equation. We isolate the absolute value part and setup a compound equation
with "or". As an example: |2x + 3| = 5 would lead to: 2x + 3 = 5 or 2x + 3 = -5. This is due to the absolute value operation. We could replace x with a
value that leads to |-5| = 5 or |5| = 5. Either gives us a true statement.

Solving Absolute Value Equations Resources:

Videos:

Khan Academy - Video
Khan Academy - Video
Patrick JMT - YouTube - Video
Text Lessons:

Purple Math - Text Lesson
SOS Math - Text Lesson
Chili Math - Text Lesson
Worksheets:

Math-Aids - Worksheet
Kuta - Worksheet
Khan Academy - Practice
+ Show More +