Lesson Objectives
- Demonstrate an understanding of how to simplify a radical
- Learn how to rationalize denominators with square roots
- Learn how to rationalize denominators with higher-level roots
How to Rationalize the Denominator
In this lesson, we will learn how to completely simplify a radical and show how to rationalize the denominator.
Example 1: Simplify each $$\frac{4\sqrt{2}}{5\sqrt{5}}$$ We have a radical (square root of 5) in the denominator. We can multiply the numerator and denominator by the square root of 5. This will rationalize the denominator: $$\frac{4\sqrt{2}}{5\sqrt{5}}\cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{4\sqrt{10}}{25}$$ Example 2: Simplify each $$\frac{15\sqrt{2}}{8\sqrt{14}}$$ We have a radical (square root of 14) in the denominator. We can multiply the numerator and denominator by the square root of 14. This will rationalize the denominator: $$\frac{15\sqrt{2}}{8\sqrt{14}}\cdot \frac{\sqrt{14}}{\sqrt{14}}=$$ $$\frac{15 \cdot \sqrt{4}\cdot \sqrt{7}}{8 \cdot 14}=$$ $$\require{cancel}\frac{30\sqrt{7}}{112}=\frac{15 \cancel{30}\sqrt{7}}{56\cancel{112}}=\frac{15\sqrt{7}}{56}$$
4 = 2 • 2
This means we only need an additional factor of 2 or 8 to have a perfect cube. We can rationalize our denominator by multiplying both numerator and denominator by the cube root of 2: $$\frac{1}{\sqrt[3]{4}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=\frac{1 \cdot \sqrt[3]{2}}{\sqrt[3]{8}}=\frac{\sqrt[3]{2}}{2}$$ Let's look at some additional examples.
Example 3: Simplify each $$\frac{\sqrt[3]{10}}{\sqrt[3]{32}}$$ Let's start by thinking about 32:
32 = 25
If we had one additional factor of 2, we would have 6 factors of 2. This would also be 4 cubed:
64 = 43
We can rationalize our denominator by multiplying the numerator and denominator by the cube root of 2: $$\frac{\sqrt[3]{10}}{\sqrt[3]{32}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=$$ $$\frac{\sqrt[3]{10 \cdot 2}}{\sqrt[3]{64}}=\frac{\sqrt[3]{20}}{4}$$ Example 4: Simplify each $$\frac{\sqrt[4]{3}}{\sqrt[4]{25x^2}}$$ Let's start by thinking about 25:
25 = 5 • 5
We would need two additional factors of 5, to obtain a perfect fourth:
5 • 5 • 5 • 5 = 625
In terms of x2, we need two additional factors of x:
x2 • x2 = x4
We can rationalize our denominator by multiplying the numerator and denominator by the fourth root of 25x2: $$\frac{\sqrt[4]{3}}{\sqrt[4]{25x^2}}\cdot \frac{\sqrt[4]{25x^2}}{\sqrt[4]{25x^2}}=$$ $$\frac{\sqrt[4]{3 \cdot 25x^2}}{\sqrt[4]{625x^4}}=\frac{\sqrt[4]{75x^2}}{5x}$$
Simplified Form of a Radical
- The radicand contains no factor (except 1) that is a:
- Perfect Square » Square Root
- Perfect Cube » Cube Root
- Perfect Fourth » Fourth Root
- So on and so forth...
- The radicand cannot contain fractions
- There is no radical present in any denominator
Example 1: Simplify each $$\frac{4\sqrt{2}}{5\sqrt{5}}$$ We have a radical (square root of 5) in the denominator. We can multiply the numerator and denominator by the square root of 5. This will rationalize the denominator: $$\frac{4\sqrt{2}}{5\sqrt{5}}\cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{4\sqrt{10}}{25}$$ Example 2: Simplify each $$\frac{15\sqrt{2}}{8\sqrt{14}}$$ We have a radical (square root of 14) in the denominator. We can multiply the numerator and denominator by the square root of 14. This will rationalize the denominator: $$\frac{15\sqrt{2}}{8\sqrt{14}}\cdot \frac{\sqrt{14}}{\sqrt{14}}=$$ $$\frac{15 \cdot \sqrt{4}\cdot \sqrt{7}}{8 \cdot 14}=$$ $$\require{cancel}\frac{30\sqrt{7}}{112}=\frac{15 \cancel{30}\sqrt{7}}{56\cancel{112}}=\frac{15\sqrt{7}}{56}$$
Rationalizing Higher-Level Roots
Let's suppose we see a problem such as: $$\frac{1}{\sqrt[3]{4}}$$ When we encounter a cube root, we need to create a perfect cube. We currently have the cube root of 4. If we think about 4:4 = 2 • 2
This means we only need an additional factor of 2 or 8 to have a perfect cube. We can rationalize our denominator by multiplying both numerator and denominator by the cube root of 2: $$\frac{1}{\sqrt[3]{4}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=\frac{1 \cdot \sqrt[3]{2}}{\sqrt[3]{8}}=\frac{\sqrt[3]{2}}{2}$$ Let's look at some additional examples.
Example 3: Simplify each $$\frac{\sqrt[3]{10}}{\sqrt[3]{32}}$$ Let's start by thinking about 32:
32 = 25
If we had one additional factor of 2, we would have 6 factors of 2. This would also be 4 cubed:
64 = 43
We can rationalize our denominator by multiplying the numerator and denominator by the cube root of 2: $$\frac{\sqrt[3]{10}}{\sqrt[3]{32}}\cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=$$ $$\frac{\sqrt[3]{10 \cdot 2}}{\sqrt[3]{64}}=\frac{\sqrt[3]{20}}{4}$$ Example 4: Simplify each $$\frac{\sqrt[4]{3}}{\sqrt[4]{25x^2}}$$ Let's start by thinking about 25:
25 = 5 • 5
We would need two additional factors of 5, to obtain a perfect fourth:
5 • 5 • 5 • 5 = 625
In terms of x2, we need two additional factors of x:
x2 • x2 = x4
We can rationalize our denominator by multiplying the numerator and denominator by the fourth root of 25x2: $$\frac{\sqrt[4]{3}}{\sqrt[4]{25x^2}}\cdot \frac{\sqrt[4]{25x^2}}{\sqrt[4]{25x^2}}=$$ $$\frac{\sqrt[4]{3 \cdot 25x^2}}{\sqrt[4]{625x^4}}=\frac{\sqrt[4]{75x^2}}{5x}$$
Ready for more?
Watch the Step by Step Video Lesson Take the Practice Test