About Classifying Real Numbers:

When we work with the real number system, each real number can be labeled as a "rational number" or an "irrational number". We can further break down some rational numbers into other categories such as an "integer", "whole number", or "natural number".


Test Objectives
  • Demonstrate the ability to determine if a number is a Natural Number
  • Demonstrate the ability to determine if a number is a Whole Number
  • Demonstrate the ability to determine if a number is an Integer
  • Demonstrate the ability to determine if a number is a Rational Number
  • Demonstrate the ability to determine if a number is an Irrational Number
Classifying Real Numbers Practice Test:

#1:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}{-}2$$

$$b)\hspace{.1em}{-}\frac{4}{3}$$


#2:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}\sqrt{4}$$

$$b)\hspace{.1em}\frac{\sqrt{5}}{1}$$


#3:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}0.\overline{45}$$

$$b)\hspace{.1em}\frac{\sqrt{13}}{2}$$


#4:

Instructions: Determine which of the following numbers are Whole Numbers.

$$a)\hspace{.1em}{-}8, \frac{14}{2}, \sqrt{36}$$

$$b)\hspace{.1em}\sqrt{60}, \frac{-8}{-1}, {-}12 $$


#5:

Instructions: Determine which of the following numbers are Irrational Numbers.

$$a)\hspace{.1em}{-}\sqrt{81}, -1.6\overline{321}, \sqrt{18}$$

$$b){-}90, {-}\sqrt[3]{27}, \sqrt{15}$$


Written Solutions:

#1:

Solutions:

a) Integer, Rational Number

b) Rational Number


#2:

Solutions:

a) Natural Number, Whole Number, Integer, Rational Number

b) Irrational Number


#3:

Solutions:

a) Rational Number

b) Irrational Number


#4:

Solutions:

$$a)\hspace{.1em}\frac{14}{2}:(7), \sqrt{36}:(6)$$

$$b)\hspace{.1em}\frac{-8}{-1}: (8)$$


#5:

Solutions:

$$a)\hspace{.1em}\sqrt{18}$$

$$b)\hspace{.1em}\sqrt{15}$$