When we work with the real number system, each real number can be labeled as a "rational number" or an "irrational number". We can further break down some rational numbers into other categories such as an "integer", "whole number", or "natural number".

Test Objectives
• Demonstrate the ability to determine if a number is a Natural Number
• Demonstrate the ability to determine if a number is a Whole Number
• Demonstrate the ability to determine if a number is an Integer
• Demonstrate the ability to determine if a number is a Rational Number
• Demonstrate the ability to determine if a number is an Irrational Number
Classifying Real Numbers Practice Test:

#1:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}{-}2$$

$$b)\hspace{.1em}{-}\frac{4}{3}$$

#2:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}\sqrt{4}$$

$$b)\hspace{.1em}\frac{\sqrt{5}}{1}$$

#3:

Instructions: How can we classify the given number?

$$a)\hspace{.1em}0.\overline{45}$$

$$b)\hspace{.1em}\frac{\sqrt{13}}{2}$$

#4:

Instructions: Determine which of the following numbers are Whole Numbers.

$$a)\hspace{.1em}{-}8, \frac{14}{2}, \sqrt{36}$$

$$b)\hspace{.1em}\sqrt{60}, \frac{-8}{-1}, {-}12$$

#5:

Instructions: Determine which of the following numbers are Irrational Numbers.

$$a)\hspace{.1em}{-}\sqrt{81}, -1.6\overline{321}, \sqrt{18}$$

$$b){-}90, {-}\sqrt{27}, \sqrt{15}$$

Written Solutions:

#1:

Solutions:

a) Integer, Rational Number

b) Rational Number

#2:

Solutions:

a) Natural Number, Whole Number, Integer, Rational Number

b) Irrational Number

#3:

Solutions:

a) Rational Number

b) Irrational Number

#4:

Solutions:

$$a)\hspace{.1em}\frac{14}{2}:(7), \sqrt{36}:(6)$$

$$b)\hspace{.1em}\frac{-8}{-1}: (8)$$

#5:

Solutions:

$$a)\hspace{.1em}\sqrt{18}$$

$$b)\hspace{.1em}\sqrt{15}$$