About Introduction to Matrices:

A matrix is an ordered array of numbers. The order of a matrix is stated as the number of rows by the number of columns. For example, a matrix with 3 rows and 4 columns has an order of 3 × 4. If we have a matrix A, then a13 would be the element in A that is in the first row and third column. Two matrices are equal if and only if they have the same order and each corresponding element is equal.


Test Objectives
  • Demonstrate the ability to find the order of a matrix
  • Demonstrate the ability to find a specific entry in a matrix
  • Demonstrate the ability to find values that make two matrices equal
Introduction to Matrices Practice Test:

#1:

Instructions: State the order.

$$a)\hspace{.2em}$$ $$\left[ \begin{array}{ccc}5 & -1 & 3\\ 3 & 7 & 0\end{array}\right]$$

$$b)\hspace{.2em}$$ $$\left[ \begin{array}{ccc}-9 & 19 & 17\\ 2 & 3 & 0 \\ 1 & -1 & 5\end{array}\right]$$


#2:

Instructions: State the order.

$$a)\hspace{.2em}$$ $$\left[ \begin{array}{ccccc}5 & 2 & 19 & 13 & 22 \\ -17 & -4 & 8 & 29 & 1 \\ -9 & -7 & -3 & 44 & 50\end{array}\right]$$

Instructions: Find the indicated element.

$$b)\hspace{.2em}$$ $$A=\left[ \begin{array}{cc}5 & 6 \\ 1 & -1 \\ 7 & 3\end{array}\right]$$ $$a_{12} = \,?$$


#3:

Instructions: Find the indicated element.

$$a)\hspace{.2em}$$ $$A=\left[ \begin{array}{cc}5 & 6 \\ 1 & -1 \\ 7 & 3\end{array}\right]$$ $$a_{23} = \, ?$$

Instructions: Answer the given question.

b) What type of matrix has the same number of rows as columns?


#4:

Instructions: If A = B, what is the value of x?

$$a)\hspace{.2em}$$ $$A=\left[ \begin{array}{cc}1 & 5 \\ 6 & x\end{array}\right]$$ $$B=\left[ \begin{array}{cc}1 & 5 \\ 6 & 7\end{array}\right]$$

Instructions: If A = B, what is the value of x and y?

$$b)\hspace{.2em}$$

$$A=\left[ \begin{array}{cc}-3 & 1 \\ 6 & x + 5\end{array}\right]$$ $$B=\left[ \begin{array}{cc}y + 2 & 1 \\ 6 & -2\end{array}\right]$$

#5:

Instructions: Find x, y, and z such that A = B.

$$a)\hspace{.2em}$$

$$A=\left[ \begin{array}{ccc}-1 & 5 & 9 \\ x - 1 & y + 2 & 4\end{array}\right]$$ $$B=\left[ \begin{array}{ccc}-1 & 5 & 9 \\ 13 & -21 & z + 4\end{array}\right]$$

$$b)\hspace{.2em}$$

$$A=\left[ \begin{array}{ccc}3 & 5 & 11 \\ x + 1 & y - 7 & 7\end{array}\right]$$ $$B=\left[ \begin{array}{ccc}3 & 11 & 5 \\ -14 & 12 & z - 9\end{array}\right]$$
Written Solutions:

#1:

Solutions:

a) 2 × 3

b) 3 × 3


#2:

Solutions:

a) 3 × 5

b) a12 = 6


#3:

Solutions:

a) Doesn't exist

b) Square Matrix


#4:

Solutions:

$$a)\hspace{.2em}x = 7$$

$$b)\hspace{.2em}x=-7, y=-5$$


#5:

Solutions:

$$a)\hspace{.2em}x=14, y=-23, z=0$$

$$b)\hspace{.2em}A ≠ B$$ Matrices A and B can never be equal since: $$a_{12} = 5 \, \text{and} \, b_{12} = 11$$ $$a_{13} = 11 \, \text{and} \, b_{13} = 5$$ No values of x, y, or z can ever make A = B.