Lesson Objectives
- Demonstrate an understanding of how to find the LCD for a group of rational expressions
- Learn how to simplify a complex rational expression using the LCD Method
How to Simplify a Complex Rational Expression
A complex fraction is a fraction that contains another fraction in its numerator, denominator, or both. $$\Large{\frac{\frac{3 + 5}{7}}{\frac{9 + 1}{11}}}$$ To simplify this type of fraction, we can use two different strategies.
Method 1:
Example 1: Simplify each. $$\Large{\frac{\frac{x}{3x + 12}- \frac{x}{9}}{\frac{x}{x + 4}- \frac{x}{4}}}$$ To find our LCD, let's think about the denominators: $$3(x + 4), 9, (x+4), 4$$ LCD: $$36(x + 4)$$ Let's multiply the numerator and denominator of the complex rational expression by the LCD: $$\frac{\normalsize{36(x + 4)}\left(\Large{\frac{x}{3x + 12}- \frac{x}{9}}\right)}{36(x+4) \left(\Large{\frac{x}{x + 4}- \frac{x}{4}}\right)}$$ Numerator: $$36(x+4) \cdot \frac{x}{3(x + 4)}- 36(x + 4) \cdot \frac{x}{9}$$ $$\require{cancel}12\cancel{36(x+4)}\cdot \frac{x}{\cancel{3(x + 4)}}- 4\cancel{36}(x + 4) \cdot \frac{x}{\cancel{9}}$$ $$12x - 4x(x + 4)$$ Denominator: $$36(x + 4) \cdot \frac{x}{x + 4}- 36(x + 4) \cdot \frac{x}{4}$$ $$36\cancel{(x + 4)}\cdot \frac{x}{\cancel{(x + 4)}}- 9\cancel{36}(x + 4) \cdot \frac{x}{\cancel{4}}$$ $$36x - 9x(x + 4)$$ Our complex rational expression becomes: $$\frac{12x - 4x(x + 4)}{36x - 9x(x + 4)}$$ $$\frac{-4x^2 - 4x}{-9x^2}$$ $$\frac{\cancel{-x}(4x + 4)}{\cancel{-x}\cdot 9x}$$ $$\frac{4x + 4}{9x}$$ Example 2: Simplify each. $$\Large{\frac{\frac{4}{x + 2}+ \frac{x + 2}{x - 1}}{\frac{4}{x - 1}- \frac{x - 1}{2}}}$$ To find our LCD, let's think about the denominators: $$2,(x + 2), (x - 1)$$ LCD: $$2(x + 2)(x - 1)$$ Let's multiply the numerator and denominator of the complex rational expression by the LCD: $$\frac{2(x + 2)(x - 1) \left(\Large{\frac{4}{x + 2}+ \frac{x + 2}{x - 1}}\right)}{2(x + 2)(x - 1)\left(\Large{\frac{4}{x - 1}- \frac{x - 1}{2}}\right)}$$ Numerator: $$2(x + 2)(x - 1) \cdot \frac{4}{(x + 2)}+ 2(x + 2)(x - 1) \cdot \frac{(x + 2)}{(x - 1)}$$ $$2\cancel{(x + 2)}(x - 1) \cdot \frac{4}{\cancel{(x + 2)}}+ 2(x + 2)\cancel{(x - 1)}\cdot \frac{(x + 2)}{\cancel{(x - 1)}}$$ $$8(x - 1) + 2(x + 2)(x + 2)$$ Denominator: $$2(x + 2)(x - 1) \cdot \frac{4}{(x - 1)}- 2(x + 2)(x - 1) \cdot \frac{(x - 1)}{2}$$ $$2(x + 2)\cancel{(x - 1)}\cdot \frac{4}{\cancel{(x - 1)}}- \cancel{2}(x + 2)(x - 1) \cdot \frac{(x - 1)}{\cancel{2}}$$ $$8(x + 2) - (x + 2)(x - 1)(x - 1)$$ Our complex rational expression becomes: $$\frac{8(x - 1) + 2(x + 2)(x + 2)}{8(x + 2) - (x + 2)(x - 1)(x - 1)}$$ $$\frac{8x - 8 + 2x^2 + 8x + 8}{8x + 16 - x^3 + 3x - 2}$$ $$\frac{2x^2 + 16x}{-x^3 + 11x + 14}$$ $$\frac{2x(x + 8)}{-(x + 2)(x^2 - 2x - 7)}$$
Method 1:
- Simplify the numerator and denominator separately
- Perform the main division
- Multiply the numerator and denominator of the complex fraction by the LCD of all denominators in the complex fraction
- Simplify
Simplifying Complex Rational Expressions
When we come across complex rational expressions, we can use the same strategies. Method 2 is normally a bit faster, so we will use this method for our examples. To simplify a complex rational expression, we will multiply the numerator and the denominator of the complex rational expression by the LCD of all denominators involved. Once this is done, we can simplify if needed. Let's look at a few examples.Example 1: Simplify each. $$\Large{\frac{\frac{x}{3x + 12}- \frac{x}{9}}{\frac{x}{x + 4}- \frac{x}{4}}}$$ To find our LCD, let's think about the denominators: $$3(x + 4), 9, (x+4), 4$$ LCD: $$36(x + 4)$$ Let's multiply the numerator and denominator of the complex rational expression by the LCD: $$\frac{\normalsize{36(x + 4)}\left(\Large{\frac{x}{3x + 12}- \frac{x}{9}}\right)}{36(x+4) \left(\Large{\frac{x}{x + 4}- \frac{x}{4}}\right)}$$ Numerator: $$36(x+4) \cdot \frac{x}{3(x + 4)}- 36(x + 4) \cdot \frac{x}{9}$$ $$\require{cancel}12\cancel{36(x+4)}\cdot \frac{x}{\cancel{3(x + 4)}}- 4\cancel{36}(x + 4) \cdot \frac{x}{\cancel{9}}$$ $$12x - 4x(x + 4)$$ Denominator: $$36(x + 4) \cdot \frac{x}{x + 4}- 36(x + 4) \cdot \frac{x}{4}$$ $$36\cancel{(x + 4)}\cdot \frac{x}{\cancel{(x + 4)}}- 9\cancel{36}(x + 4) \cdot \frac{x}{\cancel{4}}$$ $$36x - 9x(x + 4)$$ Our complex rational expression becomes: $$\frac{12x - 4x(x + 4)}{36x - 9x(x + 4)}$$ $$\frac{-4x^2 - 4x}{-9x^2}$$ $$\frac{\cancel{-x}(4x + 4)}{\cancel{-x}\cdot 9x}$$ $$\frac{4x + 4}{9x}$$ Example 2: Simplify each. $$\Large{\frac{\frac{4}{x + 2}+ \frac{x + 2}{x - 1}}{\frac{4}{x - 1}- \frac{x - 1}{2}}}$$ To find our LCD, let's think about the denominators: $$2,(x + 2), (x - 1)$$ LCD: $$2(x + 2)(x - 1)$$ Let's multiply the numerator and denominator of the complex rational expression by the LCD: $$\frac{2(x + 2)(x - 1) \left(\Large{\frac{4}{x + 2}+ \frac{x + 2}{x - 1}}\right)}{2(x + 2)(x - 1)\left(\Large{\frac{4}{x - 1}- \frac{x - 1}{2}}\right)}$$ Numerator: $$2(x + 2)(x - 1) \cdot \frac{4}{(x + 2)}+ 2(x + 2)(x - 1) \cdot \frac{(x + 2)}{(x - 1)}$$ $$2\cancel{(x + 2)}(x - 1) \cdot \frac{4}{\cancel{(x + 2)}}+ 2(x + 2)\cancel{(x - 1)}\cdot \frac{(x + 2)}{\cancel{(x - 1)}}$$ $$8(x - 1) + 2(x + 2)(x + 2)$$ Denominator: $$2(x + 2)(x - 1) \cdot \frac{4}{(x - 1)}- 2(x + 2)(x - 1) \cdot \frac{(x - 1)}{2}$$ $$2(x + 2)\cancel{(x - 1)}\cdot \frac{4}{\cancel{(x - 1)}}- \cancel{2}(x + 2)(x - 1) \cdot \frac{(x - 1)}{\cancel{2}}$$ $$8(x + 2) - (x + 2)(x - 1)(x - 1)$$ Our complex rational expression becomes: $$\frac{8(x - 1) + 2(x + 2)(x + 2)}{8(x + 2) - (x + 2)(x - 1)(x - 1)}$$ $$\frac{8x - 8 + 2x^2 + 8x + 8}{8x + 16 - x^3 + 3x - 2}$$ $$\frac{2x^2 + 16x}{-x^3 + 11x + 14}$$ $$\frac{2x(x + 8)}{-(x + 2)(x^2 - 2x - 7)}$$
Skills Check:
Example #1
Simplify each. $$\Large\frac{\frac{y - 3}{x + 5}- \frac{y - 3}{x - 4}}{\frac{x + 5}{y - 3}- \frac{x - 4}{y - 3}}$$
Please choose the best answer.
A
$$\frac{2y^2 + 8y + 8}{-5x - 9y + 2}$$
B
$$\frac{-y^2 + 6y - 9}{x^2 + x - 20}$$
C
$$\frac{-5x - 25}{2xy - 6x + y - 3}$$
D
$$\frac{5x + 9y - 2}{2xy + 4x - 8y - 16}$$
E
$$\frac{x + 4y}{x^2 + x - 5}$$
Example #2
Simplify each. $$\Large\frac{\frac{2}{y + 3}- \frac{x - 2}{y + 3}}{\frac{4}{y + 3}+ \frac{x - 2}{4}}$$
Please choose the best answer.
A
$$\frac{- 4x + 16}{xy + 3x - 2y + 10}$$
B
$$\frac{xy - 2y + x + 2}{2x - 12}$$
C
$$\frac{xy - 4y + 3x - 12}{-x^2 - 4x + 8y}$$
D
$$\frac{2x + 3y}{2x - 12}$$
E
$$\frac{xy + 3x + y}{5xy - x}$$
Example #3
Simplify each. $$\Large\frac{\frac{9}{y - 6}+ \frac{x - 5}{y - 6}}{\frac{1}{3}- \frac{3}{x + 1}}$$
Please choose the best answer.
A
$$\frac{-x^2 + 4x + 9y}{3xy - 9x + 3y}$$
B
$$\frac{x^2 + 9y}{3xy + x + 7}$$
C
$$\frac{x^3 - 3x^2 + 72x - 4}{54y - 32}$$
D
$$\frac{3xy - 18x + 30y - 1}{4x^2 - 34x + 7}$$
E
$$\frac{3x^2 + 15x + 12}{xy - 6x - 8y + 48}$$
Congrats, Your Score is 100%
Better Luck Next Time, Your Score is %
Try again?
Ready for more?
Watch the Step by Step Video Lesson Take the Practice Test