About Negative Exponents & the Quotient Rule:
When we simplify expressions that contain exponents, we often have to utilize the quotient rule for exponents. Additionally, we will often come across many scenarios where we need to simplify an expression with negative exponents or an exponent of zero.
Test Objectives
- Demonstrate a general understanding of the rules of exponents
- Demonstrate the ability to simplify an expression using the quotient rule for exponents
- Demonstrate the ability to simplify an expression with negative exponents
- Demonstrate the ability to simplify an expression with an exponent of zero
#1:
Instructions: Simplify each.
$$a)\hspace{.2em}\frac{2x^3y^2}{2^{-1}x^2y^5}$$
$$b)\hspace{.2em}\frac{(2^{-2}x^4y^{-2})^{-1}}{2x^{-3}y^7}$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: Simplify each.
$$a)\hspace{.2em}\frac{2^3x^5y^{-3}}{(2^{-3}x^5y^{-6})^{-2}}$$
$$b)\hspace{.2em}\frac{x^5y^6z^4}{x^{-5}y^{-6}z^{-4}}$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: Simplify each.
$$a)\hspace{.2em}\frac{x^9y^7z^{-10}}{xy^{-5}z^{11}}$$
$$b)\hspace{.2em}\frac{(x^5y^2)^{-3}}{x^4y^4z^{-2}}$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: Simplify each.
$$a)\hspace{.2em}\frac{(x^2y^{-4}z)^{-5}}{x^4y^9z^{11}}\cdot \frac{1}{(x^4y^9z^{11})^{-1}}$$
$$b)\hspace{.2em}\frac{(xyz)^{-4}}{(x^5y^3z)^{-3}}\cdot \frac{(x^7y^4z^2)^{-2}}{(x^4y^4z^4)^{-1}}$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: Simplify each.
$$a)\hspace{.2em}\frac{(x^9y^{12}z^2)^0}{x^{-9}y^{-12}z^{-2}}\cdot \frac{(x^{-5}z^2z^{15})^{-3}}{xyz^5}$$
$$b)\hspace{.2em}\frac{(2y^3z^4)^{-2}\cdot (2yz^5)^2}{3^2(y^4z)^3 \cdot (3y^3z^2x)^{-4}}$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.2em}\frac{2^2x}{y^3}$$
$$b)\hspace{.2em}\frac{2}{xy^5}$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.2em}\frac{x^{15}}{2^3y^{15}}$$
$$b)\hspace{.2em}x^{10}y^{12}z^8$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.2em}\frac{x^8y^{12}}{z^{21}}$$
$$b)\hspace{.2em}\frac{z^2}{x^{19}y^{10}}$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.2em}\frac{y^{20}}{x^{10}z^5}$$
$$b)\hspace{.2em}\frac{xy}{z}$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.2em}\frac{x^{23}y^{11}}{z^{54}}$$
$$b)\hspace{.2em}\frac{3^2x^4z^7}{y^4}$$