About Solving Literal Equations:
When we work with formulas, we often have to solve for one of the variables involved. In order to accomplish this task, we isolate that variable on one side of the equation, using our normal four-step process.
Test Objectives
- Demonstrate the ability to solve an equation for a specified variable
#1:
Instructions: solve each equation for the given variable.
$$a)\hspace{.2em}F=\frac{9}{5}C + 32,\hspace{.2em}» \hspace{.2em}C$$
$$b)\hspace{.2em}d=rt,\hspace{.2em}» \hspace{.2em}t$$
Watch the Step by Step Video Solution View the Written Solution
#2:
Instructions: solve each equation for the given variable.
$$a)\hspace{.2em}C=\frac{5}{9}\left(F - 32\right),\hspace{.2em}» \hspace{.2em}F$$
$$b)\hspace{.2em}V=LWH,\hspace{.2em}» \hspace{.2em}H$$
Watch the Step by Step Video Solution View the Written Solution
#3:
Instructions: solve each equation for the given variable.
$$a)\hspace{.2em}A=\frac{1}{2}bh,\hspace{.2em}» \hspace{.2em}h$$
$$b)\hspace{.2em}A=2xy^2 + 2xyz,\hspace{.2em}» \hspace{.2em}x$$
Watch the Step by Step Video Solution View the Written Solution
#4:
Instructions: solve each equation for the given variable.
$$a)\hspace{.2em}y - y_{1}=m(x - x_{1}),\hspace{.2em}» \hspace{.2em}x$$
$$b)\hspace{.2em}y=\frac{-az - b}{xz},\hspace{.2em}» \hspace{.2em}z$$
Watch the Step by Step Video Solution View the Written Solution
#5:
Instructions: solve each equation for the given variable.
$$a)\hspace{.2em}yz + m=\frac{z + 4}{x - 1},\hspace{.2em}» \hspace{.2em}z$$
$$b)\hspace{.2em}m^2x - a^2x=\frac{z + b - x}{y + 1},\hspace{.2em}» \hspace{.2em}x$$
Watch the Step by Step Video Solution View the Written Solution
Written Solutions:
#1:
Solutions:
$$a)\hspace{.2em}C=\frac{5}{9}(F - 32)$$
$$b)\hspace{.2em}t=\frac{d}{r}$$
Watch the Step by Step Video Solution
#2:
Solutions:
$$a)\hspace{.2em}F=\frac{9}{5}C + 32$$
$$b)\hspace{.2em}H=\frac{V}{LW}$$
Watch the Step by Step Video Solution
#3:
Solutions:
$$a)\hspace{.2em}h=\frac{2A}{b}$$
$$b)\hspace{.2em}x=\frac{A}{2y(y + z)}$$
Watch the Step by Step Video Solution
#4:
Solutions:
$$a)\hspace{.2em}x=\frac{y - y_{1}}{m}+ x_{1}$$
$$b)\hspace{.2em}z=-\frac{b}{xy + a}$$
Watch the Step by Step Video Solution
#5:
Solutions:
$$a)\hspace{.2em}z=\frac{-xm + m + 4}{xy - y - 1}$$
$$b)\hspace{.2em}x=\frac{z + b}{-a^2y + m^2y + m^2 - a^2 + 1}$$