About Graphing a Parabola:

To sketch the graph of a parabola, we first write our equation in vertex form. Once this is done, we can plot our vertex and find additional points using the 1, 3, 5, 7,... pattern.


Test Objectives
  • Demonstrate the ability to sketch the graph of a parabola
Graphing a Parabola Practice Test:

#1:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}f(x)=x^2 + 12x + 35$$


#2:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}f(x)=x^2 - 6x + 8$$


#3:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}f(x)=2x^2 - 32x + 126$$


#4:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}f(x)=-2x^2 + 16x - 29$$


#5:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}f(x)=\frac{1}{2}x^2 + 4x + 7$$


Written Solutions:

#1:

Solutions:

$$a)\hspace{.2em}$$

graphing f(x)=x^2 + 12x + 35

#2:

Solutions:

$$a)\hspace{.2em}$$

graphing f(x)=x^2 - 6x + 8

#3:

Solutions:

$$a)\hspace{.2em}$$

graphing f(x)=2x^2 - 32x + 126

#4:

Solutions:

$$a)\hspace{.2em}$$

graphing f(x)=-2x^2 + 16x - 29

#5:

Solutions:

$$a)\hspace{.2em}$$

graphing f(x)=(1/2)x^2 + 4x + 7