### About Graphing Horizontal Parabolas:

Horizontal parabolas are of the form: x = a(y - k)^{2} + h or x = ay^{2} + by + c. We approach graphing a horizontal parabola in the same way that we graph a vertical parabola. First, we place our equation in vertex form. Once this is done, we can plot the vertex and use the step pattern to find additional points. We will then reflect across the line y = k to find points on the other side of our parabola. Lastly, we will sketch our graph by drawing a smooth curve through the points.

Test Objectives

- Demonstrate the ability to sketch the graph of a sideways parabola

#1:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}x=-3y^2 - 6y + 1$$

Watch the Step by Step Video Lesson View the Written Solution

#2:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}x=y^2 - 6y + 12$$

Watch the Step by Step Video Lesson View the Written Solution

#3:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}x=-2y^2 - 20y - 47$$

Watch the Step by Step Video Lesson View the Written Solution

#4:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}x=-y^2 + 6y - 10$$

Watch the Step by Step Video Lesson View the Written Solution

#5:

Instructions: Sketch the graph of each.

$$a)\hspace{.2em}x=-\frac{1}{2}y^2 - 4y - 10$$

Watch the Step by Step Video Lesson View the Written Solution

Written Solutions:

#1:

Solutions:

$$a)\hspace{.2em}$$

Watch the Step by Step Video Lesson

#2:

Solutions:

$$a)\hspace{.2em}$$

Watch the Step by Step Video Lesson

#3:

Solutions:

$$a)\hspace{.2em}$$

Watch the Step by Step Video Lesson

#4:

Solutions:

$$a)\hspace{.2em}$$

Watch the Step by Step Video Lesson

#5:

Solutions:

$$a)\hspace{.2em}$$