### About Introduction to Sequences:

A sequence is a function that computes an ordered list of numbers.

Test Objectives
• Demonstrate the ability to find the first few terms of a sequence
• Demonstrate the ability to find the first few terms of a sequence defined by a recursive formula
Introduction to Sequences Practice Test:

#1:

Instructions: Find the first five terms of the sequence.

$$a)\hspace{.2em}a_n=-11 + 20n$$

$$b)\hspace{.2em}a_n=-74 + 100n$$

#2:

Instructions: Find the first five terms of the sequence.

$$a)\hspace{.2em}a_n=-224 + 200n$$

$$b)\hspace{.2em}a_n=-16 + 6n$$

#3:

Instructions: Find the first five terms of the sequence.

$$a)\hspace{.2em}a_n=30n$$

$$b)\hspace{.2em}a_{n + 1}=a_n - 200$$ $$a_1=18$$

#4:

Instructions: Find the first five terms of the sequence.

$$a)\hspace{.2em}a_{n + 1}=a_n - 100$$ $$a_1=20$$

$$b)\hspace{.2em}a_{n + 1}=a_n - 100$$ $$a_1=37$$

#5:

Instructions: Find the first five terms of the sequence.

$$a)\hspace{.2em}a_{n + 1}=a_n - 6$$ $$a_1=38$$

$$b)\hspace{.2em}a_{n + 1}=a_n - 5$$ $$a_1=-1$$

Written Solutions:

#1:

Solutions:

$$a)\hspace{.2em}9, 29, 49, 69, 89$$

$$b)\hspace{.2em}26, 126, 226, 326, 426$$

#2:

Solutions:

$$a)\hspace{.2em}-24, 176, 376, 576, 776$$

$$b)\hspace{.2em}-10, -4, 2, 8, 14$$

#3:

Solutions:

$$a)\hspace{.2em}30, 60, 90, 120, 150$$

$$b)\hspace{.2em}18, -182, -382, -582, -782$$

#4:

Solutions:

$$a)\hspace{.2em}20, -80, -180, -280, -380$$

$$b)\hspace{.2em}37, -63, -163, -263, -363$$

#5:

Solutions:

$$a)\hspace{.2em}38, 32, 26, 20, 14$$

$$b)\hspace{.2em}-1, -6, -11, -16, -21$$