Question 1 of 5Find the Slope and y-intercept from the Graph
Graph of a Linear Equation in two Variables, Find the Slope and y-intercept from the Graph
Next »
Select the Correct Answer Below: Correct! Not Correct!
A
$$m=\frac{1}{5}, y\hspace{-.15em}-\hspace{-.15em}intercept = (6,0)$$ $$m=\frac{1}{5}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ = (6,0)$$
B
$$m=-3, y\hspace{-.15em}-\hspace{-.15em}intercept = (-6,4)$$ $$m=-3$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ = (-6,4)$$
C
$$m=-\frac{1}{3}, y\hspace{-.15em}-\hspace{-.15em}intercept = (6,-2)$$ $$m=-\frac{1}{3}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ = (6,-2)$$
D
$$m=\frac{1}{3}, y\hspace{-.15em}-\hspace{-.15em}intercept = (0,-2)$$ $$m=\frac{1}{3}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ = (0,-2)$$
E
$$m=3, y\hspace{-.15em}-\hspace{-.15em}intercept = (0,-2)$$ $$m=3$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ = (0,-2)$$
Question 2 of 5Find the Slope and y-intercept from the Graph
Graph of a Linear Equation in two Variables, Find the Slope and y-intercept from the Graph
Next »
Select the Correct Answer Below: Correct! Not Correct!
A
$$m=-\frac{2}{3}, y\hspace{-.15em}-\hspace{-.15em}intercept = (-1,0)$$ $$m=-\frac{2}{3}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ =(-1,0)$$
B
$$m=-\frac{3}{2}, y\hspace{-.15em}-\hspace{-.15em}intercept = (0,-1)$$ $$m=-\frac{3}{2}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ =(0,-1)$$
C
$$m=-3, y\hspace{-.15em}-\hspace{-.15em}intercept = (4,5)$$ $$m=-3$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ =(4,5)$$
D
$$m=-2, y\hspace{-.15em}-\hspace{-.15em}intercept = (-7,0)$$ $$m=-2$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ =(-7,0)$$
E
$$m=-\frac{4}{3}, y\hspace{-.15em}-\hspace{-.15em}intercept = (4,-7)$$ $$m=-\frac{4}{3}$$$$y\hspace{-.15em}-\hspace{-.15em}intercept$$$$ =(4,-7)$$
Question 3 of 5Determine which Statement is True
$$20x-4y=16,-5x+y=31$$ $$20x-4y=16$$$$-5x+y=31$$
Next »
Select the Correct Answer Below: Correct! Not Correct!
A
These lines are perpendicular, the product of their slopes is -1
B
These lines are parallel, the slopes are both 1
C
These lines are neither parallel or perpendicular
D
These lines are perpendicular, the slopes are the same
E
These lines are parallel, the slopes are the same
Question 4 of 5Determine which Statement is True
$$-8x+4y=-2,6x+3y=\frac{15}{2}$$ $$-8x+4y=-2$$$$6x+3y=\frac{15}{2}$$
Next »
Select the Correct Answer Below: Correct! Not Correct!
A
These lines are parallel, the slopes are both 1
B
These lines are neither parallel or perpendicular
C
These lines are perpendicular, the slopes are the same
D
These lines are parallel, the slopes are the same
E
These lines are perpendicular, the product of their slopes is -1
Question 5 of 5Determine which Statement is True
$$-3x+\frac{1}{2}y=-4,\frac{5}{6}x+5y=105$$ $$-3x+\frac{1}{2}y=-4$$$$\frac{5}{6}x+5y=105$$
Finish »
Select the Correct Answer Below: Correct! Not Correct!
A
These lines are neither parallel or perpendicular
B
These lines are perpendicular, the product of their slopes is -1
C
These lines are parallel, the slopes are both 1
D
These lines are perpendicular, the slopes are the same
E
These lines are parallel, the slopes are the same

Great Job! You Passed!

Better Luck Next Time...

Restart Quiz ↻
Review Lesson ↻
Next Lesson »