Question 1 of 5Simplify and State the Restricted Values
Select the Correct Answer Below: Correct! Not Correct!
A
$$\text{Simplified}\hspace{-.1em}:\frac{2x-4}{3(11x-1)}$$ $$\text{Restricted}\hspace{-.1em}:x≠-3,4$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x-4}{3(11x-1)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-3,4$$
B
$$\text{Simplified}\hspace{-.1em}:\frac{4x-1}{9(x+4)}$$ $$\text{Restricted}\hspace{-.1em}:x≠-2,\frac{1}{2}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{4x-1}{9(x+4)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-2,\frac{1}{2}$$
C
$$\text{Simplified}\hspace{-.1em}:\frac{2x-5}{3(3x+1)}$$ $$\text{Restricted}\hspace{-.1em}:x≠4,-\frac{1}{3}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x-5}{3(3x+1)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠4,-\frac{1}{3}$$
D
$$\text{Simplified}\hspace{-.1em}:\frac{5x-4}{3x-11}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{1}{3},-\frac{2}{5}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{5x-4}{3x-11}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{1}{3},-\frac{2}{5}$$
E
$$\text{Simplified}\hspace{-.1em}:\frac{4}{x-1}$$ $$\text{Restricted}\hspace{-.1em}:x≠1,-7$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{4}{x-1}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠1,-7$$
Question 2 of 5Simplify and State the Restricted Values
Select the Correct Answer Below: Correct! Not Correct!
A
$$\text{Simplified}\hspace{-.1em}:\frac{4(x+1)}{x-3}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{2}{3},-\frac{5}{3}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{4(x+1)}{x-3}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{2}{3},-\frac{5}{3}$$
B
$$\text{Simplified}\hspace{-.1em}:\frac{2(x+3)}{3x+8}$$ $$\text{Restricted}\hspace{-.1em}:x≠6,-2$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(x+3)}{3x+8}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠6,-2$$
C
$$\text{Simplified}\hspace{-.1em}:\frac{x-3}{x-8}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{5}{8},-\frac{8}{3}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{x-3}{x-8}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{5}{8},-\frac{8}{3}$$
D
$$\text{Simplified}\hspace{-.1em}:\frac{x+1}{x+8}$$ $$\text{Restricted}\hspace{-.1em}:x≠-1,5$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{x+1}{x+8}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-1,5$$
E
$$\text{Simplified}\hspace{-.1em}:\frac{2(x+2)}{3x+8}$$ $$\text{Restricted}\hspace{-.1em}:x≠3,-\frac{8}{3}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(x+2)}{3x+8}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠3,-\frac{8}{3}$$
Question 3 of 5Simplify and State the Restricted Values
Select the Correct Answer Below: Correct! Not Correct!
A
$$\text{Simplified}\hspace{-.1em}:\frac{(5x-3)(x+2)}{5x-7}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{7}{5}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{(5x-3)(x+2)}{5x-7}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{7}{5}$$
B
$$\text{Simplified}\hspace{-.1em}:\frac{5(x-3)}{x-2}$$ $$\text{Restricted}\hspace{-.1em}:x≠-5$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{5(x-3)}{x-2}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-5$$
C
$$\text{Simplified}\hspace{-.1em}:\frac{2x-5}{7x}$$ $$\text{Restricted}\hspace{-.1em}:x≠-2,\frac{1}{4}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x-5}{7x}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-2,\frac{1}{4}$$
D
$$\text{Simplified}\hspace{-.1em}:\frac{3(x+7)}{3x-1}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{8}{5},-\frac{5}{3}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{3(x+7)}{3x-1}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{8}{5},-\frac{5}{3}$$
E
$$\text{Simplified}\hspace{-.1em}:\frac{2(x-3)}{4x-1}$$ $$\text{Restricted}\hspace{-.1em}:x≠3,-\frac{3}{5}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(x-3)}{4x-1}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠3,-\frac{3}{5}$$
Question 4 of 5Simplify and State the Restricted Values
Select the Correct Answer Below: Correct! Not Correct!
A
$$\text{Simplified}\hspace{-.1em}:\frac{2(7x+5)}{5x-9}$$ $$\text{Restricted}\hspace{-.1em}:x≠5,-3$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(7x+5)}{5x-9}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠5,-3$$
B
$$\text{Simplified}\hspace{-.1em}:\frac{x(x-7)}{4x-11}$$ $$\text{Restricted}\hspace{-.1em}:x≠-9,13,-\frac{8}{9}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{x(x-7)}{4x-11}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-9,13,-\frac{8}{9}$$
C
$$\text{Simplified}\hspace{-.1em}:\frac{2x(x-4)}{9(x+5)}$$ $$\text{Restricted}\hspace{-.1em}:x≠-1,5,7$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x(x-4)}{9(x+5)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠-1,5,7$$
D
$$\text{Simplified}\hspace{-.1em}:\frac{7x-8}{x(5x+3)}$$ $$\text{Restricted}\hspace{-.1em}:x≠0,3,-\frac{3}{5}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{7x-8}{x(5x+3)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠0,3,-\frac{3}{5}$$
E
$$\text{Simplified}\hspace{-.1em}:\frac{2x-7}{3x(4x+1)}$$ $$\text{Restricted}\hspace{-.1em}:x≠5,\frac{2}{7},-\frac{2}{5}$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x-7}{3x(4x+1)}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠5,\frac{2}{7},-\frac{2}{5}$$
Question 5 of 5Simplify and State the Restricted Values
Select the Correct Answer Below: Correct! Not Correct!
A
$$\text{Simplified}\hspace{-.1em}:\frac{2(3x-4)}{x+2}$$ $$\text{Restricted}\hspace{-.1em}:x≠2,-4$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(3x-4)}{x+2}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠2,-4$$
B
$$\text{Simplified}\hspace{-.1em}:\frac{2(x-4)}{x+4}$$ $$\text{Restricted}\hspace{-.1em}:x≠8,-2$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2(x-4)}{x+4}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠8,-2$$
C
$$\text{Simplified}\hspace{-.1em}:\frac{2x(3x-4)}{x-8}$$ $$\text{Restricted}\hspace{-.1em}:x≠\frac{1}{4},-2$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{2x(3x-4)}{x-8}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠\frac{1}{4},-2$$
D
$$\text{Simplified}\hspace{-.1em}:\frac{x(5x-8)}{x-4}$$ $$\text{Restricted}\hspace{-.1em}:x≠4,-1$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{x(5x-8)}{x-4}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠4,-1$$
E
$$\text{Simplified}\hspace{-.1em}:\frac{5x(x-1)}{x+2}$$ $$\text{Restricted}\hspace{-.1em}:x≠2,\frac{1}{8},-4$$ $$\text{Simplified}\hspace{-.1em}:$$$$\frac{5x(x-1)}{x+2}$$ $$\text{Restricted}\hspace{-.1em}:$$$$x≠2,\frac{1}{8},-4$$

Great Job! You Passed!

Better Luck Next Time...

Restart Quiz ↻
Review Lesson ↻
Next Lesson »