Question 1 of 5: Find the inverse:
A
$$f^{-1}=\text{log}_{2}(6^{x - 9}- 10)$$
B
$$f^{-1}=(6^{x + 5}- 2)^{\frac{1}{5}}$$
C
$$f^{-1}=\text{log}_{4}(2^{\frac{x}{4}}+ 2)$$
D
$$f^{-1}=\text{log}_{4}(6^{\frac{x}{10}}+ 7)^{\frac{1}{4}}$$
E
$$f^{-1}=\text{log}_{6}(2^{x - 4}- 1)$$
Question 2 of 5: Find the inverse:
A
$$f^{-1}(x)=\text{log}_{5}(-3x^5 + 6)$$
B
$$f^{-1}(x)=\text{log}_{5}(3x^5 + 8)$$
C
$$f^{-1}(x)=\text{log}_{5}(-2x^2 + 3)$$
D
$$f^{-1}(x)=\text{log}_{5}(-4x^2 + 9)$$
E
$$f^{-1}(x)=\text{log}_{5}(-2x^2 - 3)$$
Question 3 of 5: Find the inverse:
A
$$f^{-1}(x)=\text{log}_{3}(x^3)$$
B
$$f^{-1}(x)=\text{log}_{2}(x - 9)$$
C
$$f^{-1}(x)=\text{log}_{\frac{1}{3}}(x + 7)$$
D
$$f^{-1}(x)=\text{log}_{\frac{1}{9}}(5x^7 - 2)$$
E
$$f^{-1}(x)=\text{log}_{\frac{1}{3}}(3^x + 7)$$
Question 4 of 5: Find the inverse:
A
$$f^{-1}(x)=\text{log}_4{x^4}$$
B
$$f^{-1}(x)=\text{log}_{\frac{1}{4}}(x^4 - 7)$$
C
$$f^{-1}(x)=\text{log}_{6}(x + 7)$$
D
$$f^{-1}(x)=\text{log}_{6}(x^3 + 6)$$
E
$$f^{-1}(x)=\text{log}_{3}(x^4)$$
Question 5 of 5: Find the inverse:
A
$$f^{-1}(x)=\text{log}_{2}(x + 10)$$
B
$$f^{-1}(x)=\text{log}_{\frac{1}{3}}(-2x)$$
C
$$f^{-1}(x)=\text{log}_{4}(-4x - 10)$$
D
$$f^{-1}(x)=\text{log}_{\frac{1}{2}}(10 - 2^x)$$
E
$$f^{-1}(x)=\text{log}_{2}(x - 5)$$