Question 1 of 5: Identify the function, domain, and range:
A
$$f(x)=x^2$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, \infty)$$
B
$$f(x)=-x$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, 0]$$
C
$$f(x)=x^3$$ $$D:(-\infty, \infty)$$ $$R:(3, \infty)$$
D
$$f(x)=x$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, \infty)$$
E
$$f(x)=\frac{1}{2}x$$ $$D:(-\infty, \infty)$$ $$R: \left[\frac{1}{2}, \infty\right)$$
Question 2 of 5: Identify the function, domain, and range:
A
$$f(x)=\frac{1}{x^2}$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, \infty)$$
B
$$f(x)=x^2$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, 0) ∪ (0, \infty)$$
C
$$f(x)=\frac{1}{x - 1}$$ $$D:(-\infty, 1)$$ $$R:(-\infty, \infty)$$
D
$$f(x)=\frac{1}{x}$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, \infty)$$
E
$$f(x)=\frac{1}{x}$$ $$D:(-\infty, 0) ∪ (0, \infty)$$ $$R:(-\infty, 0) ∪ (0, \infty)$$
Question 3 of 5: Identify the function, domain, and range:
A
$$f(x)=\frac{1}{\sqrt{x}}$$ $$D:(-\infty, 0) ∪ (0, \infty)$$ $$R:(-\infty, \infty)$$
B
$$f(x)=\frac{1}{x}$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, 0) ∪ (0, \infty)$$
C
$$f(x)=\sqrt{x}$$ $$D:(-\infty, \infty)$$ $$R:(-\infty, \infty)$$
D
$$f(x)=\frac{x}{\sqrt{x}}$$ $$D:(-\infty, 0) ∪ (0, \infty)$$ $$R:(-\infty, 0) ∪ (0, \infty)$$
E
$$f(x)=\sqrt{x}$$ $$D:[0, \infty)$$ $$R:[0, \infty)$$
Question 4 of 5: Identify the function, domain, and range:
A
$$f(x)=x^2$$ $$D:(-\infty, \infty)$$ $$R: [0, \infty)$$
B
$$f(x)=\frac{1}{x^2}$$ $$D:[0, \infty)$$ $$R: (-\infty, \infty)$$
C
$$f(x)=x^3$$ $$D:(-\infty, \infty)$$ $$R: (-\infty, \infty)$$
D
$$f(x)=\frac{x^2}{\sqrt{x}}$$ $$D:(-\infty, 0) ∪ (0, \infty)$$ $$R: [0, \infty)$$
E
$$f(x)=2x^2$$ $$D:(-\infty, \infty)$$ $$R: [0, \infty)$$
Question 5 of 5: Identify the function, domain, and range:
A
$$f(x)=\sqrt{x^3}$$ $$D:(-\infty, \infty)$$ $$R: (-\infty, \infty)$$
B
$$f(x)=3x^3$$ $$D:(-\infty, \infty)$$ $$R: (-\infty, \infty)$$
C
$$f(x)=\frac{x^2}{x^3}$$ $$D:(-\infty, 0) ∪ (0, \infty)$$ $$R: (-\infty, 0) ∪ (0, \infty)$$
D
$$f(x)=x^2$$ $$D:(-\infty, \infty)$$ $$R: (-\infty, \infty)$$
E
$$f(x)=x^3$$ $$D:(-\infty, \infty)$$ $$R: (-\infty, \infty)$$