Question 1 of 5: Find the common ratio (r) and the explicit formula (an):
A
$$r=4$$ $$a_{n}=\frac{1}{2}\cdot 4^{n - 1}$$
B
$$r=-4$$ $$a_{n}=-2 \cdot (-4)^{n - 1}$$
C
$$r=-2$$ $$a_{n}=-3 \cdot (-2)^{n - 1}$$
D
$$r=-4$$ $$a_{n}=-3 \cdot (-4)^{n - 1}$$
E
$$r=2$$ $$a_{n}=-\frac{1}{3}\cdot \left(-\frac{1}{3}\right)^{n - 1}$$
Question 2 of 5: Find the named terms:
A
$$a_{11}=1559$$ $$a_{n}=-3 \cdot (-2)^{n - 1}$$
B
$$a_{11}=-1536$$ $$a_{n}=-\frac{3}{2}\cdot (-2)^{n - 1}$$
C
$$a_{11}=-\frac{3}{2048}$$ $$a_{n}=-\frac{3}{2}\cdot \left(-\frac{1}{2}\right)^{n - 1}$$
D
$$a_{11}=-3072$$ $$a_{n}=-3 \cdot 2^{n - 1}$$
E
$$a_{11}=3072$$ $$a_{n}=3 \cdot (-2)^{n - 1}$$
Question 3 of 5: Find the named terms:
A
$$r=2$$ $$a_{9}=512$$ $$a_n=2 \cdot 2^{n - 1}$$
B
$$r=-3$$ $$a_{9}=-6561$$ $$a_n=-1 \cdot (-3)^{n - 1}$$
C
$$r=2$$ $$a_{9}=256$$ $$a_n=2^{n - 1}$$
D
$$r=2$$ $$a_{9}=-256$$ $$a_n=(-2)^{n - 1}$$
E
$$r=4$$ $$a_{9}=1097$$ $$a_n=4 \cdot \left(\frac{1}{3}\right)^{n - 1}$$
Question 4 of 5: Evaluate the geometric series:
A
$$-166{,}708$$
B
$$-172{,}994$$
C
$$-159{,}964$$
D
$$-\frac{4}{7}$$
E
$$\frac{6}{7}$$
Question 5 of 5: Evaluate the geometric series:
A
$$\frac{11}{3}$$
B
No Sum
C
$$2$$
D
$$\frac{14}{3}$$
E
$$\frac{3}{4}$$